Закономерность изменения эффективности накопления сигнала двоичного кода

«Существует один, издавна известный и применяемый в самых различных формах метод борьбы с помехами. Метод этот состоит в многократном повторении сигнала. Несколько принятых образцов или экземпляров сигнала оказываются по разному искаженными помехой, так как сигнал и помеха – процессы независимые. Поэтому, сличая на приемном конце несколько экземпляров одного и того же сигнала, можно восстановить истинную форму переданного сигнала с тем большей уверенностью, чем большим числом экземпляров сигнала мы располагаем. Так как дело сводится в конечном счете к некоторому суммированию отдельных образцов сигнала, то метод этот может быть назван методом накопления» [1].

Однако, остается открытым вопрос о том, что именно и в каком количестве нужно взять от каждого экземпляра принятого сигнала и накапливать, для того чтобы свести к минимуму вредное воздействие помех на принимаемое сообщение.

Для ответа на этот вопрос рассмотрим процесс накопления сигнала для наиболее простого случая – случая приема элементов двоичного кода на фоне флюктуационного шума, когда, по результатам n независимых измерений текущего значения модулируемого параметра переносчика (амплитуда, частота, фаза), нужно определить, какой именно символ был передан: «0» или «1».

Любое сообщение (звук, текст, рисунок), передаваемое с помощью технических средств связи, может быть представлено (закодировано) двоичным кодом [1].

В качестве одного из примеров реализации метода накопления в [2] описан процесс накопления самих значений модулируемого параметра переносчика (МПП).

В литературе по теории оптимального обнаружения сигналов [2 .6] для различения символов «0» и «1» рекомендуется накапливать не сами значения xi МПП, а значения другой величины yi, которая функционально связана с наблюдаемыми значениями МПП и условными плотностями их распределений при приеме символа «0» и символа «1».

y = ln [W1(x)/W0(x)], (1)

где: W1(x)/W0(x) – отношение правдоподобия; W1(x) – условная плотность распределения значений МПП при приеме символа «1»; W0(x) – условная плотность распределения значений МПП при приеме символа «0».

Такая точка зрения является общепринятой и нашла свое отражение в учебниках, справочниках, монографиях и энциклопедиях.

В работе [7] показано, что при малых различиях между условными распределениями W0(x) и W1(x) такой подход к оптимальному различению символов «0» и «0» оправдан, но он перестает быть корректным при существенных различиях между распределениями W0(x) и W1(x) и существенных различиях между значениями допустимых вероятностей ошибок 1-го и 2-го рода.

В реальных технических системах связи в качестве переменной y используется подходящая для этого случая физическая величина, например, напряжение. Тогда ее можно рассматривать как некоторый переносчик сигнала, модулированным параметром которого является амплитуда.

Для оптимального различения символов «0» и «0» при существенных различиях между распределениями W0(x) и W1(x) необходимо использовать установленную в работах [7, 8] закономерность изменения эффективности накопления каждого квантованного уровня сигнала двоичного кода в зависимости от вида априорных условных распределений наблюдаемых значений МПП, заключающуюся в том, что при прочих равных условиях эффективность накопления каждого квантованного уровня сигнала достигает своего максимально возможного значения, если условные распределения накапливаемых значений МПП соответствуют минимуму выражения (2) [8]:

{(s0y zF + s1y zD)/(M1 – M0)} → min, (2)

где: M1 > M0; M0 – среднее значение (математическое ожидание) МПП при приеме символа «0» ; M1 – среднее значение МПП при приеме символа «0» ; zF – коэффициент, значение которого зависит от допустимых вероятностей ошибок 1-го рода и вида функции распределения накапливаемых значений МПП при приеме символа «0» [9]; zD – коэффициент, значение которого зависит от допустимых вероятностей ошибок 2-го рода и вида функции распределения накапливаемых значений МПП при приеме символа «0» [9].

Зависимость между значениями zF и zD, с одной стороны, и значениями вероятностей ошибок 1-го и 2-го рода, с другой стороны, можно описать с помощью таких соотношений:

a = 1 – Ф0(zF), b = Ф1(zD).

где: a – допустимая вероятность ошибок 1-го рода; b – допустимая вероятность ошибок 2-го рода; Ф0(zF) – нормированая функция распределения накапливаемых значений МПП на выходе накопителя при приеме символа «0» ; Ф1(zD) – нормированая функция распределения накапливаемых значений МПП на выходе накопителя при приеме символа «0».

Перейти на страницу: 1 2

Другое по теме

Закон вечности
Природа имеет всеобщий и абсолютный ритм. Этот ритм равен семи. Коль скоро это так, то тогда, описывая математически циклическую структуру периодической системы, можно вывести своеобразный мировой закон. Периодическая система химических элементов, как известно, начинается с водорода. А существует ли конечный элемент, и ...

Ионометрия. Метод добавок
Интерес к методу добавок в ионометрии вызывается тем, что он играет более значительную роль, чем метод добавок в других методах анализа. Ионометрический метод добавок дает два больших преимущества. Во-первых, если колебание ионной силы в анализируемых пробах непредсказуемо, то применение распространенного метода градуи ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru