Здания и сооружения из монолитного железобетона

по формуле (6.6) определяется граничное xR

(6.6)

Условие (6.4) соблюдается, так как x=0,026<xR=0,661.

Для двух каркасов принимается 4Æ16 A-II, Аs=8,04 см2 (см. каркас (1) на рис. 6.2).

В средних пролетах М2=57,7 кНм;

h=0,99; x=0,023;

для двух каркасов принимается 2Æ18 A-II, Аs=5,09 см2 (см. каркасы (2) на рис. 6.2); условие x£xR соблюдается, так как x=0,023<xR=0,661.

Над вторыми от края опорами МВ=83,8 кНм;

h=0,86; x=0,28;

условие x£xR соблюдается, так как x=0,28<xR=0,661.

Растянутой арматурой над опорами второстепенных балок являются рабочие стержни надопорных сеток, расположенных между осями соседних второстепенных балок. Принимаются две сварные сетки V с поперечной рабочей арматурой диаметром 5 мм и продольной 4 мм (Аs=1,57 см2) площадью сечения каждая на 1 пог. м:

Над средними опорами МС=57,7 Нм:

h=0,87; x=0,26;

условие x£xR соблюдается, так как x=0,26<xR=0,661; принимаются две сетки VI с рабочей поперечной арматурой диаметром 5 мм и продольной диаметром 4мм (Аs=1,18 см2), площадью сечения каждой на 1 пог. м:

(-2,5% допустимо).

Сетки V и IV заводятся за ось опоры (при p/g£З): одну сетку на 1/3l от оси и другую на 1/4l от оси (см. рис. 6.2).

Расчет поперечной арматуры

Максимальная поперечная сила QBЛ=0,6ql=0,6*28,52*5,85=100 кН. Проверяется первое условие (6.7)

Q£0,35Rbbh0; (6.7)

Qmax=100000 H<0,35*0,85*11(100)*20*41,5=272000 H,

где

Q – в H;

Rb – в МПа;

(100) – для пересчета правой части условия (6.7), H;

условие соблюдается, принятые размеры сечения достаточны.

Проверяется второе условие (6.8)

Q£k1RRbtmб1bh0; (6.8)

100000 H>0,6*0,88(100)*0,85*20*41,5=37500 H,

условие (2.49) не удовлетворяется, требуется поперечное армирование.

Из формулы (6.9) определяется требуемая интенсивность поперечного армирования

(6.9)

Принимаются поперечные стержни диаметром dx=6 мм, As,x= 0,283 см2 в соответствии с [2, стр. 39, прил. IV]. При двух каркасах n = 2 и As,x=0,283*2=0,566 см2.

Шаг поперечных стержней по формуле (6.10)

u=RswAs,x/qx=170(100)*0,566/490=19 см. (6.10)

Наибольшее расстояние между поперечными стержнями согласно формуле (6.11)

(6.11)

Исходя из условий конструирования на приопорных участках длиной 1/4 пролета это расстояние должно быть при h£450 мм u£h/2=45/2=22,5 см и не более u=15 см. Принимается расстояние u=15 см по наименьшему из вычисленных значений.

В средней половине пролета балки поперечная сила на расстоянии 1/4 пролета от опоры балки

Q=Qmax-ql/4=100-28,52*5,85/4=58,2 кH;

здесь условие (6.8) не удовлетворяется, так как Q=58,2 кH>k*Rbtmб1bh0=37,5 кH, следовательно, требуется постановка поперечных стержней по расчету.

Вычисляется требуемое значение qx:

Шаг поперечных стержней при dx=6 мм и n=2

u=170(100)*0,566/164=49 см.

Максимальный шаг поперечных стержней

по конструктивным требованиям [1.5, п. 5.27] при высоте сечения h>300 мм расстояние между поперечными стержнями u принимается не более 3/4h и не более 500 мм.

Поэтому в средней части балки можно принять u=3/4h=0,75*45=33 см, принимается u=30 см (кратно 5 см).

В средних пролетах наибольшая поперечная сила

Q=0,5ql2 =0,5*28,52*5,7=81,2 кH<100 кH.

По конструктивным соображениям в целях унификации каркасов принимается для балок средних пролетов (каркасы (2), рис. 6.2) поперечные стержни диаметром 6 мм с шагом 15 и 30 см, так же как для каркасов (1) в крайнем пролете.

Каркасы (1) и (2) на опоре соединяются дополнительными стержнями с запуском за грань опоры (главной балки) на длину 15d1 и не менее (u+150 мм).

Перейти на страницу: 1 2 3 4 5 6

Другое по теме

Форма и вращение астероидов
Астероиды так малы, что сила тяжести на них ничтожна. Она не в состоянии придать им форму шара, какую придает планетам и их большим спутникам, сминая и утрамбовывая их вещество. Большую роль при этом играет явление текучести. Высокие горы на Земле у подошвы "расползаются", так как прочность пород оказывается ...

Соотношение неопределённостей квантовой физики как предполагаемое пространство свободы субъекта
Данная работа представляет собой попытку объяснения феномена свободы воли с позиций физического индетерминизма. Физический индетерминизм в нашем понимании – это концепция, предполагающая потенциально вероятностный характер причинно-следственных отношений при взаимодействии физических объектов. Неоднозначность этих отно ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru