Тел: +70976539277
Email: kronos@gmail.com
Мы в:
К тому времени были хорошо изучены свойства этого вещества. Как соединение с промежуточной степенью окисления азота NO может быть как восстановителем, так и окислителем. Оно чрезвычайно легко окисляется под действием кислорода и галогенов, например хлора:
NO + Cl2
2NOCl (хлористый нитрозил)
Естественно, что под действием сильных окислителей окись азота окисляется до нитрат-иона.
Легкое окисление кислородом было использовано в разработанном еще в XVIII веке камерном способе получения серной кислоты, где окись азота играет роль катализатора-переносчика кислорода, что видно из следующих реакций:
2NO + O2
2NO2
SO2 + H2O
H2SO3
NO2 + H2SO3
NO + H2SO4
NO охотно реагирует и с восстановителями, причем восстановление обычно идет до термодинамически стабильного молекулярного азота:
2NO + H2S
N2 + 2S + 2H2O
2NO + 2H2
N2 + 2H2O
2NO + 2CO
N2 + 2CO2
хотя в принципе подбором условий можно превратить NO и в другие соединения со степенями окисления от + 1 до - 3, как это, например, происходит в реакции синтеза N2O.
Строение молекулы окиси азота, во многом сходной с молекулами кислорода, оксида углерода(II) и HCN сообщает ей такое общее с ними свойство, как способность к образованию комплексов. Кроме того, сходство с кислородом проявляется и в парамагнетизме обеих молекул из-за наличия неспаренных электронов. Примером образования комплекса с участием NO служит обнаруженная еще Пристли качественная реакция на нитрат-ион, называемая реакцией "бурого кольца". Сначала под действием сульфата железа нитрат-ион восстанавливается в NO:
6FeSO4 + 2KNO3 + 4H2SO4
3Fe2(SO4)3 + 2NO + 4H2O
а затем с избытком FeSO4 образуется окрашенный в бурый цвет комплекс:
FeSO4 + NO + H2O [Fe(H2O)5NO] SO4
УЧАСТИЕ В ФИКСАЦИИ АЗОТА
В конце XIX века промышленность стала нуждаться в больших количествах азотсодержащих соединений для производства красителей, взрывчатых веществ, удобрений. В связи с этим было заманчивым осуществить технологический процесс горения воздуха по уравнению
N2 + O2 - 2NO - 43 ккал/моль
Достижения термодинамики и кинетики позволили разработать научные основы процесса, который требовал высоких температур как для преодоления высокого активационного барьера, так и для достижения удовлетворительного выхода эндотермической реакции. Термодинамические данные, приведенные ниже, иллюстрируют сказанное:
В 1901 году горение воздуха было впервые осуществлено с помощью дугового метода. Воздух продували через растянутую магнитным полем электрическую дугу с температурой около 4000?С и затем охлаждали газовую смесь с тем, чтобы не дать возможности образовавшейся окиси азота разложиться на азот и кислород. Из-за этого выход NO составляет лишь около 2%, что не играет особой роли, так как затраты на исходное сырье отсутствуют. Тем не менее метод в настоящее время не находит применения из-за большого расхода электроэнергии. Есть надежда, что со временем можно будет достигнуть благоприятных технико-экономических показателей процесса, применяя регенеративные печи и используя тепло ядерных реакторов, и метод войдет в промышленную практику.
В настоящее время основной схемой фиксации азота является синтез аммиака, а окись азота играет важную роль в технологическом процессе последующего превращения аммиака в азотную кислоту. Она получается каталитическим окислением аммиака:
4NH3 + 5O2 - 4NO + 6H2O
Выполнение реакции на практике натолкнулось на некоторые трудности, важнейшей из которых является возможность сгорания не до окиси азота, а до молекулярного азота. Для предотвращения этого контакт газовой смеси с катализатором должен быть минимальным (около 10- 4 с), поскольку при длительном воздействии катализатора происходит вторичная реакция распада окиси азота на элементы. Через катализатор (тонкую сетку из сплава платины с родием) продувают смесь воздуха с аммиаком (12%), в результате выход окиси азота достигает 98%.
Имеются трудности в технологическом выполнении и следующих стадий, а именно окисления оксида до диоксида азота и его перевода в азотную кислоту. Для того чтобы увеличить недостаточно высокие для заводского процесса скорости реакции окисления окиси азота и последующего растворения в воде двуокиси азота, создают поглотительные камеры большого объема и с сильно развитой внутренней поверхностью.
Итак, вопросы химических превращений оксида азота и его синтеза важны для решения глобальной проблемы фиксации азота. Известно, что общее количество связанного азота на Земле составляет 2,4 " 109 т. Из них 65% является результатом деятельности азотфиксирующих микроорганизмов почвы, 25% приходится на промышленный синтез аммиака. Оставшаяся часть (10%) - результат сгорания азота в его окись в атмосфере за счет высокотемпературных (пожары, грозовые разряды) и фотохимических процессов в верхних слоях атмосферы. Эти процессы составляют источник более или менее постоянных концентраций оксидов азота в атмосфере, и их уровень является оптимальным для поддержания на постоянном уровне химических явлений в атмосфере Земли, прежде всего постоянства концентрации озона.
Метод двойной стандартной добавки.
Метод
заключается в том, что к анализируемому раствору добавляются 2 порции
стандартного раствора. Величина этих порций одинакова. По результатам измерений
вычисляется параметр
R
= D E2 / D E1 , где
D
E1 - разность между потенциалом электродов в анализируемом растворе,
и в растворе после первой добавки; D E2 - разност ...
Программа вступительных экзаменов по химии в 2004г. (МГУ)
Программа
по химии для поступающих в Московский государственный университет состоит из
двух разделов. В первом разделе представлены основные теоретические понятия
химии, которыми должен владеть абитуриент с тем, чтобы уметь обосновывать
химические и физические свойства веществ, перечисленных во втором разделе,
посвящен ...