Стационарные состояния квантово-механических систем.

,

другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу N энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах.

Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного удобно выбрать непрерывный набор состояний с определенными координатами , для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии:

,

где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией:

.

Анализ математических свойств стационарного уравнения Шредингера

показывает, что в случаях, когда область классически возможного движения частицы в пространстве ограничена, разрешенным является только дискретный набор энергетических уровней. При неограниченном движении энергетический спектр непрерывен.

В простейшем случае стационарных решений для атома водорода связанным состояниям (электрон находится вблизи ядра) соответствует набор разрешенных значений энергии, полностью совпадающий с вычисленными в рамках первой модели Бора и прекрасно согласующийся с экспериментом (рис. 20_7). В ионизованном состоянии (электрон ушел от ядра на бесконечно большое расстояние) частица может обладать любым значением энергии.

Перейти на страницу: 1 2 

Другое по теме

Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины)
Алкены, или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется ...

Нейроподобный элемент (нейрон)
На нейроподобный элемент поступает набор входных сигналов x1, x2, ..., xM (или входной вектор X), представляющий собой выходные сигналы других нейроподобных элементов. Каждый входной сигнал умножается на соответствующий вес связи w1, w2, ..., wM - аналог эффективности синапса. Вес связи является скалярной величиной, пол ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru