Тел: +70976539277
Email: kronos@gmail.com
Мы в:
C математической точки зрения вектором можно называть упорядоченный набор чисел лишь в том случае, если он обладает рядом определенных свойств. В частности, для любых двух таких наборов должны быть определены операции сложения и умножения на число так, чтобы выполнялись следующие свойства:
коммутативности:
(7) ,
,
ассоциативности:
(8) ,
,
и дистрибутивности:
(9) ,
,
Поскольку свойства (7-9) справедливы для операций сложения и умножения вещественных чисел, практически все утверждения из алгебры скалярных величин остаются справедливыми и для векторов. Вектор является обобщением понятия числа на случай многомерных пространств. Скаляры можно рассматривать как векторы в одномерном пространстве.
Использование векторов позволяет строить описание весьма разнообразных объектов (материальных точек, сил, полей, состояний, численности населения городов, физиологических ощущений и т.д.), используя единообразные математические обозначения
Пользуясь аналогией с соотношениями (1-6), легко определить понятие вектора скорости изменения системы:
(10)
и обобщить все последующие соотношения на многомерный случай.
Движение материальной точки в пространстве трех измерений является частным примеров эволюции во времени весьма простой системы, исчерпывающее описание которой дается тремя декартовыми координатами, совокупность которых называется радиус-вектором:
(11)
(для обозначения “обычных” векторов в трехмерном пространстве будут использоваться жирные буквы без стрелок).
Сумма векторов определяется как вектор, составляющие которого являются суммами соответствующих составляющих слагаемых
(12) ,
а произведение на число - как вектор, составляющие которого получаются домножением составляющих исходного на это число:
(13) .
Легко убедиться, что все необходимые свойства (7-9) при таком определении операций выполняются. Производная радиус-вектора по времени получила название вектора мгновенной скорости:
(14) ,
а производная скорости - ускорения:
(15) .
По известной зависимости положения тела от времени R(t) его скорость и ускорение определяются однозначно. В случае заданной скорости V(t) для однозначного определения радиус-вектора R(t) необходимо знать положение тела в какой-то определенный момент времени (“начальное положение”). Если же задана зависимость ускорения от времени, то по ней может быть найдена скорость, а по последней - радиус-вектор. Очевидно, что решение будет однозначным, если заданы начальная скорость и положение тела.
Основы обратноосмотической обработки воды
Метод обратного
осмоса заключается в фильтрации растворов под давлением через специальные
полупроницаемые мембраны, пропускающие молекулы растворителя и полностью или
частично задерживающие молекулы либо ионы растворенных веществ. В основе метода
лежит явление осмоса – самопроизвольного перехода воды через полупроницаем ...
Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины)
Алкены, или олефины (от лат. olefiant - масло — старое
название, но широко используемое в химической литературе. Поводом к такому
названию послужил хлористый этилен, полученный в XVIII столетии, —
жидкое маслянист вещество.) — алифатические непредельные углеводороды, в
молекулах которых между углеродными атомами имеется ...