Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Функцию, описывающую плоскую монохроматическую волну (3), удобно записывать с использованием многомерных обозначений в комплексном виде
(4) ,
причем знак операции взятия вещественной части комплексного числа обычно для краткости опускается.
Для описания распределения плотностей (массы, заряда, спина и т.д.) точечных объектов вводят так называемые дельта-функции , математические свойства которых весьма экзотичны:
(5) ,
причем на бесконечность функция уходит так “далеко”, что объем под ее графиком оказывается равным конечной величине - 1.
Аналогия между разложением вектора по базису и Фурье-представлением функций. Ортонормированный базис (совокупности взаимно ортогональных векторов единичной длины) {e} определяется соотношением:
(6) ,
Любой вектор R может быть разложен по выбранному базису:
(7) ,
т.е. представлен как сумма единичных ортов, домноженных на числа, называемые проекциями вектора на направление орта . Выражение для проекций получается с учетом (6) в результате скалярного умножения (7) на каждый из ортов:
(8) .
В функциональном пространстве роль векторов играют непрерывные функции, роль скалярного произведения (операция, ставящая в соответствие двум векторам число) - интеграл по конфигуранционному пространству аргументов от их произведения:
(9) .
Роль ортонормированного базиса может играть множество гармонических функций:
(10) ,
причем дельта функция в (10) является аналогом символа Кронекера в (6). Теорема о разложении в интеграл Фурье, имеющая вид:
(11)
аналогична разложению (7), причем амплитуды волн (“проекции функции F на гармонические отры”) находятся аналогично тому, как это делалось для векторов в (8):
(12) .
Помимо гармонических функций существует бесконечное множество других ортонормированных наборов, конкретный выбор которых определяется спецификой задачи. В частности, могут использоваться и дельта-функции, строгое математическое определение которых аналогично разложениям (7) и (11):
(13) .
Т.о. с точки зрения математики дельта функции (описывающие точечные частицы) и гармонические функции (описывающие монохроматические волны) составляют ортонормированные наборы и могут использоваться для разложения более сложных функций и одинаково пригодны для описания объектов и процессов с весьма разнообразными свойствами.
Акустические волны. Звук представляет собой продольные волны сжатия, распространяющиеся в упругих материальных средах. В твердых телах возможен “поперечный” звук. Ухо человека воспринимает колебания, частоты которых лежат в диапазоне от ?? Гц до Гц ??. Высота звука определяется частотой колебаний: более высокие частоты вызывают ощущение “более высокого звука”, “басы” соответствуют низкочастотным колебаниям. Ощущение громкость звука определяется энергией, переносимой звуковой волной (пропорциональна квадрату амплитуды колебаний давления).
Малогабаритный взрывной генератор СВЧ импульсов для метеорологического применения
В
статье рассматриваются взрывные генераторы, преобразующие механическую энергию
ударной волны, распространяющейся в рабочем теле, в электромагнитную энергию.
Основным элементом таких генераторов является рабочее тело, выполненное из
ферромагнитного или из сегнетоэлектрического материала. Ударная волна в рабочем
теле ф ...
Конструктивистский дискурс как философско-методологическая основа изучения когнитивных функций головного мозга
В
течение последних двадцати лет в странах Западной Европы и США широкое
распространение стало обретать философское направление, называемое радикальным
конструктивизмом. Основной тезис, вокруг которого представители данного
направления строят свои концепции, в формулировке Э. фон Глазерсфельда звучит следующим
образом: ...