Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Ответ: да, такие правила существуют – это уравнения эволюции или динамические уравнения (в частности, ньютоновы законы движения). И все же поведение многих физических объектов, описываемых такими уравнениями, – динамических систем – через какое-то время становится совершенно непредсказуемым. Например, атмосфера – типичная динамическая система, ее эволюция жестко задана известными уравнениями, однако предвидеть ее состояние через месяц – то есть сделать безошибочный прогноз погоды на месяц вперед – практически невозможно, какой бы мощный суперкомпьютер ни был в нашем распоряжении. Прогноз погоды может быть только вероятностным, а парадоксальную, порождаемую известными динамическими уравнениями – жестким алгоритмом поведения, – случайность с недавних пор стали называть детерминированным хаосом.
Вообще сегодня в физике рассматривается случайность двух типов (речь сейчас не идет о квантовой неопределенности).
Первый тип случайности возникает тогда, когда частиц, степеней свободы, событий или предметов так много, что во всем этом совершенно невозможно разобраться. Например, газ в литровой банке содержит примерно 1022 молекул, и ни одной ЭВМ не под силу рассчитать траектории такого числа сталкивающихся друг с другом частиц. Но даже если бы с помощью какого-нибудь фантастического суперкомпьютера и удалось бы проинтегрировать все «зацепляющиеся» уравнения движения в общем виде, то совершенно невозможно было бы подставить в решение уравнений конкретные начальные условия – координаты и скорости всех 1022 молекул в некоторый выбранный нами момент, хотя бы из-за необходимых для этого времени и бумаги. Именно поэтому для описания «больших» – макроскопических – систем физики используют усредненные статистические или термодинамические характеристики, такие, как температура, давление, свободная энергия, и некоторые другие.
Другой тип случайности сегодня ассоциируется с именем выдающегося французского математика Анри Пуанкаре, который, по-видимому, был первым, кто предвосхитил современный взгляд на хаос, обратив внимание на чрезвычайную «чуткость» неустойчивых динамических систем – сколь угодно малые неопределенности в их состоянии усиливаются со временем, и предсказания будущего становятся невозможными.
Статистические системы преимущественно основаны на классической схеме теории вероятностей, и чтобы найти интересующие нас вероятности, нужно проделать простые комбинаторные вычисления. Скажем, вероятность падения симметричной монеты какой-то одной стороной кверху равно 1/2 (просто из соображений симметрии). Вероятность рождения мальчика, как показывает опыт, несколько больше 1/2 и по каким-то загадочным причинам способна претерпевать внезапные скачки, сопряженные с глобальными изменениями условий жизни, например, после войн и эпидемий. А вообще пол человека – лишь один из многих генетических признаков, распределение вероятностей которых изучает математическая генетика. Вероятность угадать сколько-нибудь видов спорта при игре в «Спортлото» дается так называемым гипергеометрическим распределением (по существу, отношением чисел сочетаний разных номеров на карточке). Например, вероятность угадать все шесть видов спорта равна (С649)–1 ≈ 7,15·10–8. Математический аппарат молекулярной физики несколько сложнее, он основан на изучении так называемых кинетических уравнений. Интересно, что в 60-х годах кинетическая теория была с успехом применена к описанию коллективного движения автомобилей на автострадах, и сделал эту попытку бельгийский ученый русского происхождения, лауреат Нобелевской премии ИльяПригожин. В классической схеме случайного поведения существует еще одна группа задач – задачи, связанные с описанием броуновского движения и диффузии, их обычно объединяют термином «случайное блуждание». В 1827 году английский ботаник Роберт Броун, наблюдая в микроскоп за плавающей в воде цветочной пыльцой, обнаружил поразительное явление: частички пыльцы вели себя как живые. Они непрестанно двигались, описывая причудливые ломаные траектории (напоминающие непредсказуемое метание летающей под потолком мухи). Беспорядочное движение частичек ни на секунду не прекращалось, и тогда у Броуна возникла мысль: может быть, пыльца – ведь это органическая материя – состоит из мельчайших живых существ, некоторых «первичных» организмов? Но это предположение Броуна очень скоро пришлось отвергнуть: и неорганические микроскопические частички вели себя в жидкости столь же активно, причем их движение происходило тем энергичнее, чем меньше были частицы.
Программа вступительных экзаменов по химии в 2004г. (МГУ)
Программа
по химии для поступающих в Московский государственный университет состоит из
двух разделов. В первом разделе представлены основные теоретические понятия
химии, которыми должен владеть абитуриент с тем, чтобы уметь обосновывать
химические и физические свойства веществ, перечисленных во втором разделе,
посвящен ...
Нейроподобный элемент (нейрон)
На
нейроподобный элемент поступает набор входных сигналов x1, x2, ..., xM (или входной вектор X),
представляющий собой выходные сигналы других нейроподобных элементов. Каждый
входной сигнал умножается на соответствующий вес связи w1, w2, ..., wM - аналог эффективности синапса. Вес связи является скалярной
величиной, пол ...