Сканирующая туннельная микроскопия

Значительную роль в неудержимом исследовании наномира сыграли, по крайней мере, два события:

- создание сканирующего туннельного микроскопа (G. Ben-nig, G. Rohrer, 1982 г.) и сканирующего атомно-силового микроскопа (G. Bennig, К. Kuatt, К. Gerber, 1986 г.) [3] (Нобелевская премия 1992 г.);

- открытие новой формы существования углерода в природе - фуллеренов (Н. Kroto, J. Health, S. O'Brien, R. Curl, R. Smal-ley, 1985 r.) [4] (Нобелевская премия 1996 г.).

Новые микроскопы позволили наблюдать атомно-молекулярную структуру поверхности монокристаллов в нанометровом диапазоне размеров. Наилучшее пространственное разрешение приборов составляет сотую долю нанометра по нормали к поверхности. Действие сканирующего туннельного микроскопа основано на туннелировании электронов через вакуумный барьер. Высокая разрешающая способность обусловлена тем, что туннельный ток изменяется на три порядка при изменении ширины барьера на размеры атома. Теория квантового эффекта туннелирования заложена Г.А. Гамовым в 1928 г. в работах по a-распаду [5].

С помощью различных сканирующих микроскопов в настоящее время наблюдают за атомной структурой поверхностей монокристаллов металлов, полупроводников, высокотемпературных сверхпроводников, органических молекул, биологических объектов. На рис. 1 показана реконструированная поверхность нижней террасы грани (100) монокристалла кремния [6]. Серые кружки являются образами атомов кремния. Темные области являются локальными нанометровыми дефектами. На рис. 2 приведена атомная структура чистой поверхности грани (110) серебра (левая рамка) и той же поверхности, покрытой атомами кислорода (правая рамка) [7]. Оказалось, что кислород адсорбируется не хаотично, а образует достаточно длинные цепочки вдоль определенного кристаллографического направления. Наличие сдвоенных и одинарных цепочек свидетельствует о двух формах кислорода.

Эти формы играют важную роль в селективном окислении углеводородов, например этилена. На рис. 3 можно видеть наноструктуру высокотемпературного сверхпроводника Bi2Sr2CaCu2O2 [8]. В левой рамке рис. 4 отчетливо видны кольца молекул бензола (С6Н6) [9]. В правой рамке показаны СН2 -цепочки полиэтилена [10]. В работе [11] представлена последовательность кадров лабораторного фильма о проникновении вируса в живую клетку.

Новые микроскопы полезны не только при изучении атомно-молекулярной структуры вещества. Они оказались пригодными для конструирования наноструктур. С помощью определенных движений острием микроскопа удается создавать атомные структуры. На рис, 5 представлены этапы создания надписи "IBM" из отдельных атомов ксенона на грани (110) монокристалла никеля [12]. Движения острия при создании наноструктур из отдельных атомов напоминают приемы хоккеиста при продвижении шайбы клюшкой. Представляет интерес создание компьютерных алгоритмов, устанавливающих нетривиальную связь между движениями острия и перемещениями манипулируемых атомов на основе соответствующих математических моделей. Модели и алгоритмы необходимы для разработки автоматических "сборщиков" наноконструкций.

Рис. 4: а - С6Н6; b - СН2-СН2

Рис. 5. Xe/Ni (110)

Другое по теме

Конвергирующее поле - новое поле не волновой природы
Поле Максвелла представляет собой электромагнитные волны, и характеризуюется дивергенцией напряженности поля. В процессе дивергенции плотность энергии поля уменьшается. Одновременно с этим происходит увеличение области пространства, занимаемого полем. Кулоновское поле – это статическое поле, которое также характеризуетс ...

Эффект Оже. Оже–спектроскопия
Для исследования твердых тел используется множество различных методов, позволяющих получать исчерпывающую информацию о химическом составе, кристаллической структуре, распределении примесей и многих других свойствах, представляющих как чисто научный, так и практический интерес. В настоящее время особое значение придаетс ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru