Фотохимия

Фотохимия, наука о химических превращениях веществ под дейтсвием электромагнитного излучения – ближнего ультрафиолетового (100-400 нм), видимого (400-800 нм) и ближнего инфракраснонго (0,8 – 1,5 мкм).

Исследования химического действия излучения на различные вещества и попытки его теоретического истолкования начинаются с конца XVIII в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определённого химического эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых реакций органических и неорганических веществ под действием света и физические и химические исследование механизма и природы фотохмическихой реакции. В 1818 Т. Гроттус отверг гипотезу о тепловом действии света, предположил аналогию в воздействии на вещество света и электричества и сформулировал принцип, согласно которому причиной хмического действия может 6ыть только тот свет, который поглощается веществом (закон Гротгуса). Дальнейшими исследованиями было установлено, что количество продукта фотохмическихой реакции пропорционально произведению интенсивности излучения на время его действия (Р. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на вещество излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений фотохимии - изобретение фотографии (1839), основанной на фотохмическихом разложении галогенидов серебра.

Принципиально новый этап в развитии фотохимии начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно которому каждый поглощенный веществом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции хмических реакций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное вещество, хмического превращения претерпевает, как правило, лишь некоторая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов называется квантовым выходом фотохмическихой реакции. Квантовый выход, как правило, меньше единицы; однако в случае, напр., цепных реакций он может во много раз (даже на несколько порядков) превышать единицу.

В России важное значение имели в начале ХХ в. работы П.П. Лазарева в области фотохимии красителей и кинетики фотохмических реакций. В 40-е гг. А.Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохмических реакциях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибилизации хмических реакций.

Использование достижений квантовой химии, спектроскопии, хмической кинетики, а также появление новых экспериментальных методов исследования, в первую очередь методов изучения очень быстрых (до 10"12 с) процессов и короткоживущих промежуточных веществ, позволило развить детальные представления о законах взаимодействия фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофизические и фотохмических процессов. Фотохмические реакции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика [более 10м фотонов/ (с-см2)], то путем поглощения двух или более фотонов могут заселяться высшие возбужденные электронные состояния и наблюдаются двух- и многофотонные фотохмические реакции (Двухквантовые реакции, Многофотонные процессы). Возбужденные состояния не являются лишь “горячей” модификацией их основного состояния, несущей избыточную энергию, а отличаются от основного состояния электронной структурой, геометрией, химической свойствами. Поэтому при возбуждении молекул происходят не только количественные, но и качеств, изменения их химической поведения. Первичные продукты реакций возбужденных молекул (ионы, радикалы, изомеры и т.п.) чаще всего являются нестабильными и превращаются в конечные продукты в результате серии обычных термических химических реакций.

Перейти на страницу: 1 2

Другое по теме

Стальной вертикальный цилиндрический резервуар емкостью 5000 м3
Нормативные документы периода разработки типового проекта «Стальной вертикальный цилиндрический резервуар емкостью 5000 м3» отражали уровень научно-технических знаний того времени и, естественно, не могли учитывать достижений науки и практики последующих лет, отраженных в строительных нормах и правилах периода возведен ...

Проект автодорожного моста через р. Ока
Раздел ПОС проекта автодорожного моста через р. Ока в районе г. Калуга разработан в соответствии с заданием кафедры МТС. Строительство предполагается вести силами одного мостоотряда. В проекте предусмотрено устройство одной стройплощадки. В составе проекта разработаны следующие варианты технологии работ и необходимое о ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru