Расчеты в хроматографии

N - число теоретических тарелок.

Честно говоря, ни одна из этих формул не выполняет удовлетворительно своих функций. Доказательством этого служат различные оговорки, которые сопровождают расчеты. Обычно говорят, что число теоретических тарелок для такого-то вещества составляет величину X, а для такого-то вещества - Y, хотя оба этих вещества принадлежат одному хроматографическому разделению.

Лучшими показателями обладает формула

N = 5,545 Vmr Vr / o2,

(6)

так как не требует дополнительных условий и оговорок. Для всех пиков вычисленное значение числа теоретических тарелок одинаково!

Однако, приступая к расчетам, следует учесть влияние величины объема пробы на ширину хроматографического пика. Используя рассуждения об объеме пробы, высказанные в предыдущем разделе, можно с уверенностью записать:

N = 5,545 Vmr Vr /( 2 -  in2) .

(7)

Если есть необходимость выразить объем пробы, не пользуясь понятиями кривой Гаусса, то

N = 5,545 Vmr Vr /( 2 - (0,7Vin)2) .

(8)

Такого рода замена возможна так, как мы выяснили ранее, что при небольших объемах пробы трудно отличить пробу с прямоугольным концентрационным профилем от пробы с профилем кривой Гаусса. Если объемы пробы большие и концентрационный профиль прямоуголен, то без сомнения следует пользоваться более сложной формулой, использующей уже известную закономерность влияния пробы на ширину пика (2).

Для вычисления числа теоретических тарелок лучше пользоваться линеаризованным видом формулы (7):

 2 = 5,545 Vr Vmr /N +  in2.

(9)

Тогда рассматривая график функции в координатах  2 от VrVmr , можно вычислить одновременно число теоретических тарелок и объем пробы.

Излишне говорить о том, что свободный объем колонки должен быть определен, как можно точнее. Лучше воспользоваться советами, изложенными в п.1.

Перейти на страницу: 1 2 

Другое по теме

Метод добавок в условиях нелинейной калибровки.
Изложенные выше различные варианты метода добавок имеют одно общее свойство, заключающееся в том, что в основе их лежит закон Нернста. Закон предполагает линейность электродной функции в неограниченном диапазоне концентраций анализируемого иона. Если электродная функция нелинейна, то применение известных методов добавок станов ...

Основы обратноосмотической обработки воды
Метод обратного осмоса заключается в фильтрации растворов под давлением через специальные полупроницаемые мембраны, пропускающие молекулы растворителя и полностью или частично задерживающие молекулы либо ионы растворенных веществ. В основе метода лежит явление осмоса – самопроизвольного перехода воды через полупроницаем ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru