Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Логическим развитием идеи о корпускулярных свойствах света (“волны могут вести себя подобно частицам”) явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства).Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.
Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения (например, по рассеянному на них свету). Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины (фотоны при рассеянии передают частицам импульс порядка , попытка уменьшения которого за счет уменьшения частоты освещающего излучения неизбежно приводят к потере информации о положении частицы из-за явления дифракции). Многочисленные мысленные эксперименты, подобные рассмотренному приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности:
.
Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является “подсказкой” природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира.
Особенности квантово-механического описания. “Правила игры” квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из “привычных” классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).
Критерием истинности формулируемых принципов, как обычно, является эксперимент и, может быть, красота и изящность теории (“эта теория достаточно безумна, что бы быть верной”). Следует ожидать, что после завершения разработки еще более общей теории (релятивистской квантовой механики), принципы нерелятивистской теории превратятся в прямые следствия новых, более фундаментальных принципов.
Астероиды вблизи Земли
Возможно,
нам, жителям Земли, наиболее важно знать астероиды, орбиты которых близко
подходят к орбите нашей планеты. Обычно выделяют три семейства сближающихся с
Землёй астероидов. Они названы по именам типичных представителей - малых
планет: 1221 Амур, 1862 Аполлон, 2962 Атон. К семейству Амура относятся
астероиды, ор ...
Метод добавок в условиях нелинейной калибровки.
Изложенные
выше различные варианты метода добавок имеют одно общее свойство, заключающееся
в том, что в основе их лежит закон Нернста. Закон предполагает линейность
электродной функции в неограниченном диапазоне концентраций анализируемого
иона. Если электродная функция нелинейна, то применение известных методов
добавок станов ...